
Lehrstuhl Informatik 7 (Prof. Dr.-Ing. Reinhard German)
Martensstraße 3, 91058 Erlangen

Introduction to
Data Structures and Algorithms

Lecture with exercises (2+2)
URL: http://www7.informatik.uni-erlangen.de/~klehmet/teaching/SoSem/dsa/DSA_Script

Ulrich Klehmet
Email: klehmet@informatik.uni-erlangen.de

Data Structures and Algorithms (2)

 Introduction and motivation

 Calculating Fibonacci numbers
 recursive algorithm, iterative algorithm, iterative squaring

 Growth of functions --- asymptotic notation

 Sorting
 insertion sort, merge sort, heapsort, quicksort

 Elementary data structures
 stack, queue, linked list, tree

Contents (1)

Data Structures and Algorithms (3)

 Hash tables
 direct addressing, hashing, chaining, open addressing

 Binary search trees
 definition, tree walks, querying, insertion, deletion,

expected height

 Red-black trees
 definition, balancedness, rotations, insertion, (deletion)

 Graph algorithms
 representation of graphs, breadth-first search, depth-first

search,

Contents (2)

Data Structures and Algorithms (4)

 “Data Structures and Algorithms”

 What is a Data Structure?
 What is an Algorithm?

 What does the combination of Data Structures
and Algorithms mean?

 How can we judge how useful a certain
combination of Data Structures and Algorithms
is?

Introduction

Data Structures and Algorithms (5)

 A Data Structure is
 is the method to store and organize data

to facilitate access and modifications

 the type of data
 e.g. “stack”, “queue”, “tree”

 the construction of complex domains
using elementary domains
 e.g. arrays, records, unions, sets,

functions of elements of simple type
 and arbitrary repetitions of such construction steps

Introduction

Data Structures and Algorithms (6)

Introduction

 Informally: (Cormen et al.)
An algorithm is any well-defined computational procedure that
takes some value (set of values), as input and produces some
value (set of values) as output

 An algorithm is thus a sequence of computational steps that
transform the input into the output

 An algorithm must halt after a final number of steps or time

 An algorithm is correct if, for every input instance, it halts with the
correct output

Data Structures and Algorithms (7)

 An Algorithm

 is a procedure for processing,
that is formulated so precisely that it may be performed by
a mechanical or electronic device

 must be formulated so exactly that the sequence of the
processing steps is completely clear

 has to terminate
 has well-defined semantics

 Typical examples for algorithms
are computer programs
written in a formal programming language

Introduction

Data Structures and Algorithms (8)

What does the combination
of Data Structures and Algorithms mean?

“Algorithms + Data Structures = Programs”
(This is the title of a book
of the famous Swiss researcher Niklaus Wirth, well known
as the inventor of the programming language “Pascal”)

 Good programs employ
a “well suited combination”
of Data Structures and Algorithms

Introduction

Data Structures and Algorithms (9)

 How can we judge how useful
a certain combination of Data Structures
and Algorithms is?

 We have to evaluate the effort that arises from
performing a computation using this “certain
combination of Data Structures and Algorithms”

 This effort may be measured by
 memory space used
 cpu time used
 or other suitable measures

Introduction

Lehrstuhl Informatik 7 (Prof. Dr.-Ing. Reinhard German)
Martensstraße 3, 91058 Erlangen

Introduction to
Data Structures and Algorithms

Chapter: Introduction and motivation

- Pseudocode for algorithms

Data Structures and Algorithms (11)

Pseudocode for algorithms

Ways of formulating Algorithms
 Computer languages

(intention: to be run on computers)
 C
 JAVA
 Matlab
 Basic
 …

 Pseudo code
(intention: to describe algorithms on a high level,
to be understood by human beings)

 Remark: In both cases we have well-defined semantics!

Data Structures and Algorithms (12)

Pseudocode for algorithms

 Example of algorithm in Pseudo code

Data Structures and Algorithms (13)

 Rules for Pseudo code (1)
 Indentation indicates block structure
 Looping constructs (while, for, repeat)

and conditional constructs (if, then, else)
have interpretation similar to Pascal
 Difference: the loop-counter of for-loops remains valid

after exiting the loop

 Symbol ▻ or % indicates a comment

 Multiple assignment k j e
is equivalent to j e and then k j

Pseudocode for algorithms

Data Structures and Algorithms (14)

 Rules for Pseudo code (2)
 Variables (such as i, j, and key)

are local to the given procedure
 Array elements are accessed

by specifying the array name followed by
the index in square brackets (e.g. A[i])
 A[i..j] indicates a range of values within an array

(e.g. A[1..n] = A[1], A[2], …, A[n])

 Objects (= compound data) consist of fields or
components: abc[C] is field abc of an object C.

Pseudocode for algorithms

Data Structures and Algorithms (15)

 Rules for Pseudo code (3)
 An array is treated as an object with field length.

length[A] = number of elements of array A
 A variable representing an array or object

is treated as a pointer to the data
representing the array or object.

 NIL is the pointer that refers to no object at all
 Parameters are passed by value:

the called procedure receives a copy
of its parameters, that are treated
as local variables of the procedure

Pseudocode for algorithms

Data Structures and Algorithms (16)

 Rules for Pseudo code (4)
 The boolean operators “and” and “or”

are “short circuiting”:
 In an expression “x and y”, x is evaluated first
 If x is FALSE the expression is FALSE,

and y is not evaluated at all

 In an expression “x or y”, x is evaluated first
 If x is TRUE the expression is TRUE,

and y is not evaluated at all

 This allows writing of expressions e.g. as:
“x ≠ NIL and f[x] = y”

Pseudocode for algorithms

Lehrstuhl Informatik 7 (Prof. Dr.-Ing. Reinhard German)
Martensstraße 3, 91058 Erlangen

Introduction to
Data Structures and Algorithms

Chapter: Introduction and motivation

- Starting examples

Data Structures and Algorithms (18)

 The “sorting problem”

 Input:
A sequence of n numbers (a1, a2, …, an)

 Output:
A permutation (reordering) (a1’, a2’, …, an’)
of the input sequence
such that a1’ ≤ a2’ ≤ … ≤ an’

Starting examples

Data Structures and Algorithms (19)

 Insertion sort

Starting examples

Data Structures and Algorithms (20)

 Insertion sort

Starting examples

Data Structures and Algorithms (21)

 Insertion sort
 Be tj = number of times the while loop is executed for value j

Starting examples

Data Structures and Algorithms (22)

 Insertion sort
 “Running time in general”

Starting examples

Running time = number of primitive operations or steps

Data Structures and Algorithms (1)

Starting examples

 Insertion sort
 Best case: “already sorted”

(tj = 1 for j = 2, …, n)

linear effort w.r.t. input parameter

 ;)(a,bbnanT
n

Starting examples

 Insertion sort
 Worst case: “sorted in reversed order”

(tj = j for j = 2, …, n)

Data Structures and Algorithms (2)

Worst case running time is a quadratic function of n

Data Structures and Algorithms (25)

fact(4) = 4· fact(3) = 4 · 6 = 24

fact(3) = 3· fact(2) = 3 · 2 = 6

fact(2) = 2· fact(1) = 2· 1 = 2

fact(1) = 1· fact(0) = 1· 1 = 1

fact(0) = 1

Starting examples Principle of recursion

Expl: Computation of n! (n_factorial): n! = n (n-1) · (n-2) · … · 1 = n · (n - 1)!

fact(n)
if n = 0

then n_factorial := 1
else n_factorial := n · fact(n –1)

Data Structures and Algorithms (26)

 An example of a “recursive algorithm”: Merge sort

Starting examples

Data Structures and Algorithms (27)

Merge sort

Starting examples

	heute.pdf
	Starting examples
	Starting examples

